Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.234
Filtrar
1.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526125

RESUMO

Single-use laboratory plastics exacerbate the pollution crisis and contribute to consumable costs. In extracellular vesicle (EV) isolation, polycarbonate ultracentrifuge (UC) tubes are used to endure the associated high centrifugal forces. EV proteomics is an advancing field and validated re-use protocols for these tubes are lacking. Re-using consumables for low-yield protein isolation protocols and downstream proteomics requires reagent compatibility with mass spectroscopy acquisitions, such as the absence of centrifuge tube-derived synthetic polymer contamination, and sufficient removal of residual proteins. This protocol describes and validates a method for cleaning polycarbonate UC tubes for re-use in EV proteomics experiments. The cleaning process involves immediate submersion of UC tubes in H2O to prevent protein drying, washing in 0.1% sodium dodecyl sulfate (SDS) detergent, rinsing in hot tap water, demineralized water, and 70% ethanol. To validate the UC tube re-use protocol for downstream EV proteomics, used tubes were obtained following an experiment isolating EVs from cardiovascular tissue using differential UC and density gradient separation. Tubes were cleaned and the experimental process was repeated without EV samples comparing blank never-used UC tubes to cleaned UC tubes. The pseudo-EV pellets obtained from the isolation procedures were lysed and prepared for liquid chromatography-tandem mass spectrometry using a commercial protein sample preparation kit with modifications for low-abundance protein samples. Following cleaning, the number of identified proteins was reduced by 98% in the pseudo-pellet versus the previous EV isolation sample from the same tube. Comparing a cleaned tube against a blank tube, both samples contained a very small number of proteins (≤20) with 86% similarity. The absence of polymer peaks in the chromatograms of the cleaned tubes was confirmed. Ultimately, the validation of a UC tube cleaning protocol suitable for the enrichment of EVs will reduce the waste produced by EV laboratories and lower the experimental costs.


Assuntos
Vesículas Extracelulares , Cimento de Policarboxilato , Proteômica , Proteômica/métodos , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Polímeros/análise , Água/metabolismo
2.
Food Chem ; 446: 138890, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452510

RESUMO

Today, the wide use of triazole fungicides due to environmental damage and its side effects has raised global concern. Hence, in this research, poly-vinyl alcohol/polyacrylic-acid/CoFe-PBA@GO electrospun nanofiber was synthesized and applied as effective, degradable, and novel adsorbent at pipette-tip microextraction (PT-µSPE) method for the rapid and concurrent extraction of five of triazole fungicides in fruit and vegetable samples prior to quantitative analysis by high-performance liquid chromatography-ultraviolet. The incorporation of CoFe-PBA@GO with superporous structure and abundant functional groups in a polymer medium improves the extraction efficiency of nanofibers due to hydrogen bonding and π-π interactions formed between analytes and synthesized nano-adsorbent. Various important elements that affect the extraction yield of the target analytes were optimized utilizing a time-variable approach. Under the optimum conditions, dynamic range was attained in the range of 0.3-900.0 ng/mL with correlation coefficients ≥ 0.999. The identification limit of the PT-µSPE-HPLC-UV method ranged from 0.1 to 0.3 ng/mL.


Assuntos
Fungicidas Industriais , Nanofibras , Cromatografia Líquida de Alta Pressão , Nanofibras/química , Triazóis/análise , Fungicidas Industriais/análise , Polímeros/análise , Extração em Fase Sólida/métodos , Limite de Detecção
3.
Food Chem ; 447: 138952, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461720

RESUMO

The edible coating is proved to be a convenient approach for fruit preservation. Among these published explorations, naturally sourced macromolecules and green crosslinking strategies gain attention. This work centers on edible coatings containing Ca2+ as crosslinker for the first time, delving into crosslinking mechanisms, include alginate, chitosan, Aloe vera gel, gums, etc. Additionally, the crucial functions of Ca2+ in fruit's quality control are also elaborated in-depth, involving cell wall, calmodulin, antioxidant, etc. Through a comprehensive review, it becomes evident that Ca2+ plays a dual role in fruit edible coating. Specifically, Ca2+ constructs a three-dimensional dense network structure with polymers through ionic bonding. Moreover, Ca2+ acts directly with cell wall to maintain fruit firmness and serve as a second messenger to participate secondary physiological metabolism. In brief, coatings containing Ca2+ present remarkable effects in preserving fruit and this work may provide guidance for Ca2+ related fruit preservation coatings.


Assuntos
Filmes Comestíveis , Conservação de Alimentos , Conservação de Alimentos/métodos , Cálcio/análise , Polímeros/análise , Frutas/química
4.
Food Chem ; 445: 138698, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350198

RESUMO

Developing effective methods for highly sensitive detection of phenolic endocrine disruptors (EDCs) is especially urgent. Herein, a magnetic hydroxyl-functional porous organic polymer (M-FH-POP) was facilely synthesized by green diazo-couple reaction using basic fuchsin and hesperetin as monomer for the first time. M-FH-POP delivered superior adsorption performance for phenolic EDCs. The adsorption mechanism was hydrogen bonds, hydrophobic interaction and π-π interplay. With M-FH-POP as adsorbent, a magnetic solid phase extraction method was established for extracting trace phenolic EDCs (bisphenol A, 4-tert-butylphenol, bisphenol F and bisphenol B) in water and fish before ultra-high performance liquid chromatography tandem mass spectrometry analysis. The method displayed low detection limit (S/N = 3) of 0.05-0.15 ng mL-1 for water and 0.08-0.3 ng g-1 for fish. The spiked recoveries were 88.3 %-109.8 % with the relative standard deviations of 2.4 %-6.4 %. The method offers a new strategy for sensitive determination of phenolic EDCs in water and fish samples.


Assuntos
Disruptores Endócrinos , Água , Animais , Água/análise , Disruptores Endócrinos/análise , Polímeros/análise , Porosidade , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Fenômenos Magnéticos , Limite de Detecção
5.
Biomater Sci ; 12(5): 1079-1114, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38240177

RESUMO

Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.


Assuntos
Hidrogéis , Medicina Regenerativa , Medicina Regenerativa/métodos , Hidrogéis/química , Matriz Extracelular/química , Substâncias Macromoleculares , Polímeros/análise , Engenharia Tecidual/métodos
6.
Talanta ; 270: 125582, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176248

RESUMO

Despite substantial developments in minimally invasive lactate monitoring microneedle electrodes, most such electrode developments have focused on either sensitivity or invasiveness while ignoring a wide range of detection, which is the most important factor in measuring the normal range of lactate in interstitial fluid (ISF). Herein, we present a polymer-based planar microneedle electrode fabrication using microelectromechanical and femtosecond laser technology for the continuous monitoring of lactate in ISF. The microneedle is functionalized with two-dimensional reduced graphene oxide (rGO) and electrochemically synthesized platinum nanoparticles (PtNPs). A particular quantity of Nafion (1.25 wt%) is applied on top of the lactate enzyme to create a diffusion-controlled membrane. Due to the combined effects of the planar structure of the microneedle, rGO, and membrane, the biosensor exhibited excellent linearity up to 10 mM lactate with a limit of detection of 2.04 µM, high sensitivity of 43.96 µA mM-1cm-2, a reaction time of 8 s and outstanding stability, selectivity, and repeatability. The feasibility of the microneedle is evaluated by using it to measure lactate concentrations in artificial ISF and human serum. The results demonstrate that the microneedle described here has great potential for use in real-time lactate monitoring for use in sports medicine and treatment.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Ácido Láctico/análise , Polímeros/análise , Nanopartículas Metálicas/química , Líquido Extracelular/química , Platina/química , Técnicas Biossensoriais/métodos , Eletrodos
7.
Int J Biol Macromol ; 259(Pt 2): 129270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199531

RESUMO

A deep understanding of the inherent roles of wood polymers such as cellulose, hemicelluloses, and lignin in the hierarchical structure of wood is of key importance for advancing functional wood-based materials but is currently lacking. To address this gap, we clarified the underexplored contributions of wood polymer assemblies to the structural support and compressive properties of wood by chemically removing polysaccharides or lignin from wood blocks of a conifer Cryptomeria japonica. Compositional and structural evaluations revealed that cellulose, hemicelluloses, and lignin contributed to the dimensional stability of wood, especially that the polysaccharide network at cell corners sustained the honeycomb cell structure. Wood polymer assemblies featuring the anatomical structure of wood were also evaluated in terms of compressive properties. The modulus and strength reflected the density and anisotropy, whereas fracture behavior was well characterized by each wood polymer assembly through the classification of stress-strain curves based on principal component analysis. The difference in fracture behaviors indicated that the rigid lignin and flexible cellulose assemblies, possibly mediated by hemicelluloses, complementarily determine the unique compressive response of wood. These findings enable the adjustment of wood functionality and the selection of composite components for wood modification while inspiring the development of novel wood applications.


Assuntos
Lignina , Madeira , Lignina/química , Madeira/química , Polímeros/análise , Polissacarídeos/química , Celulose/química
8.
J Sep Sci ; 47(2): e2300802, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286730

RESUMO

Polyethylene glycol (PEG) is one of the most commonly used polymers in drug delivery systems. The investigation of the pharmacokinetic behavior of PEG is important for revealing the toxicity and efficiency of PEG-related Nano-drug delivery systems. A high through-put and selective ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method coupled with collision-induced dissociation (CID) in source technique was developed and validated to determine PEG1K polymers in cellular samples in this study. The countless precursor ions of PEG1K are dissociated in the source to generate numerous product ions which have different numbers of subunits. The transition of [M+H]+ precursor ions → product ions at m/z 177.1 (four subunits)→89.1 (two subunits) was selected to determine PEG1K due to its high sensitivity. The UHPLC-MS/MS method coupled with CID in the source showed good linearity over the range of 0.1-10 µg/mL. Intra-day and inter-day accuracies and precisions of the assay were all within ± 12.39%. The assay was successfully applied to a cellular pharmacokinetic study of PEG1K in human breast cancer cells. The cytotoxicity of PEG1K polymers was also studied and the results indicated that the cytotoxicity of PEG1K was not significant in the range of 5-1200 µg/mL.


Assuntos
Polímeros , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polímeros/toxicidade , Polímeros/análise , Polietilenoglicóis/química , Íons
9.
J Pharm Biomed Anal ; 240: 115947, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181557

RESUMO

Huangqi Liuyi Decoction, a famous classical Chinese prescription, shows significant curative effect on diabetes and its complications, in which calycosin-7-glucoside, liquiritin and glycyrrhizic acid are the main components that playing these mentioned pharmacological activity, under the synergistic action of various other ingredients in the decoction. However, there are significant differences in the content of active compounds in Chinese medicinal materials, which mainly due to origin, picking seasons, and processing methods. Hence, the accurate content of the glycosides is the prerequisite for ensuring the pharmacological efficacy. Aiming at establishing an efficient extraction and determination method for accurate quantitative analysis of calycosin-7-glucoside, liquiritin and glycyrrhizic acid in Huangqi Liuyi Decoction, an on line solid-phase extraction-high-performance liquid chromatography method was developed, using a homemade bio-based monolithic adsorbent. The bio-based adsorbent was prepared in a stainless steel tube, using bio-monomers of methyleugenol and S-allyl-L-cysteine, which effectively reduced the dependence of the polymer field on non-renewable fossil resources and reduced carbon emissions. Furthermore, the prepared adsorbent owned abundant chemical groups, which can produce interactions of hydrogen bond, dipole-dipole, π-π and hydrophobic force with the target glycosides, thus improving the specific recognition ability of the adsorbent. The experiments were carried out on an LC-3000 HPLC instrument with a six-way valve. Methodology validation indicates that the recovery is in the range of 97.0%-103.4% with the RSD in the range of 1.6%-4.0%, due to the specific selectivity of the bio-based monolithic adsorbent for these three glycosides, and good matrix-removal ability for Huangqi Liuyi decoction. The limit of detection is 0.17, 0.50 and 0.33 µg/mL for calycosin-7-glucoside, liquiritin and glycyrrhizic acid, respectively, and the limit of quantitation is 0.50, 1.50 and 1.00 µg/mL, respectively, with the linear range of 2-200 µg/mL for calycosin-7-glucoside, and 5-500 µg/mL for liquiritin and glycyrrhizic acid. The present work provided a simple and efficient method for the extraction and determination of glycosides in complex medicinal plants.


Assuntos
Astragalus propinquus , Medicamentos de Ervas Chinesas , Glicosídeos , Polímeros/análise , Ácido Glicirrízico , Medicamentos de Ervas Chinesas/química , Glucosídeos/análise , Cromatografia Líquida de Alta Pressão/métodos
10.
Int J Biol Macromol ; 259(Pt 2): 129273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211922

RESUMO

In this paper, lignocellulosic fibers and cellulose microfibrils (CMFs) were extracted from palmyra fruit peduncle waste and investigated as naturally derived cellulosic materials for their potential use as reinforcement materials in composite applications. The physicochemical, mechanical, and thermal properties of the extracted fiber were studied. Physical and morphological analysis results revealed an extracted fiber diameter of 82.5 µm with a very rough surface, providing excellent interfacial bonding performance with the polymer matrix. Chemical, mechanical, and thermal results showed that the fibers consist mainly of cellulose as their crystallized phase, with a cellulose content of 56.5 wt% and a tensile strength of 693.3 MPa, along with thermal stability up to 252 °C. The chemically extracted CMFs exhibit a short, rough-surfaced, cylindrical cellulose structure with a diameter range of 10-15 µm. These CMFs demonstrate excellent thermal stability, withstanding temperatures up to 330 °C. Furthermore, the formation of CMFs is evident from a substantial increase in the crystallinity index, which increased from 58.2 % in the raw fibers to 78.2 % in the CMFs. FT-IR analysis further confirms the successful removal of non-cellulosic materials through chlorine-free chemical treatments. These findings strongly support the potential use of extracted fibers and CMFs as reinforcement materials in polymers.


Assuntos
Frutas , Microfibrilas , Frutas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química , Polímeros/análise
11.
Mar Pollut Bull ; 200: 116051, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271918

RESUMO

Plastic pollution is widespread in oceans and the ingestion of plastic by marine organisms is causing concern about potential adverse effects. The purpose of this study was to analyze the different types of plastics in the digestive tract of female small-spotted catshark (Scyliorhinus canicula). An alkaline digestion method using 10 % potassium hydroxide (KOH), was used. The samples were filtered and visually observed to classify the plastics according to size, shape, and color. Raman spectroscopy was further employed to identify the polymer types. The study found the presence of plastics in 89.5 % of the 200 females analyzed, including 10 polymers, with polystyrene (PS), polyamide-6 (PA6), polyvinyl chloride (PVC), and silicone rubber (SR) being the most common. The polymers identified largely reflect the results of similar studies in the marine environment and were similar to global polymer diversity of microplastics, which highlights the potential of S. canicula females for biomonitoring microplastic pollution.


Assuntos
Elasmobrânquios , Poluentes Químicos da Água , Animais , Feminino , Microplásticos/análise , Plásticos/análise , Monitoramento Biológico , Prevalência , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Trato Gastrointestinal/química , Polímeros/análise
12.
Mar Pollut Bull ; 198: 115825, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029669

RESUMO

Transport of ballast water is considered a significant vector for dispersion of different pollutants, including microplastics (MPs), throughout the world's oceans. However, there is limited information on MPs in ballast water. Size distribution, polymer type, and ecological risks of MPs in ballast water were investigated for the first time in this study. The mean levels of MPs in ballast water and seawater samples were 12.53 and 11.80 items/L, respectively. MPs with a size category of 50-300 µm was the most abundant. Fiber, black, and polycarbonate (PC) were the predominant shape, color, and polymer type of identified MPs in ballast water and seawater, respectively. The pollution load index (PLI), hazard index (HI), and risk quotient (RQ) indicated high levels of MP pollution, potentially indicating an ecological risk. These findings increase our understanding of the major sources (such as ballast water), transportation routes, and related ecological risks of MPs to marine ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Água/análise , Ecossistema , Oceano Índico , Navios , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polímeros/análise , Medição de Risco
13.
Int J Biol Macromol ; 256(Pt 2): 128423, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008138

RESUMO

A chitin-based magnetic hyper-cross-linked polymer (labeled as Ch-MHCP) has been successfully synthesized and utilized for highly-effective solid-phase extraction of neonicotinoid insecticides (NEOs). The extraction capability of Ch-MHCP for four common NEOs is higher than that of four commercial sorbents including octadecyl-silane C18, oasis hydrophilic/lipophilic balanced sorbent, oasis mixed anion sorbent and poly-phenylacetic mixed anion sorbent. The large number of hydroxyl and amide groups as well as benzene rings in Ch-MHCP allow the H-bond and π-π* interaction to be the principal adsorption mechanism of Ch-MHCP for NEOs. Besides, polar interaction was also involved in the adsorption process. In combination of Ch-MHCP based extraction technique with high-performance liquid chromatography, a novel analytical method for sensitive detection of NEOs in lemon juice and tomatoes has been established. At optimal conditions, wide linear ranges were obtained to be 0.20-100 ng mL-1 for lemon juice and 0.80-1000 ng g-1 for tomatoes. The detection limits were 0.06-0.12 ng mL-1 for lemon juice and 0.24-0.60 ng g-1 for tomatoes. This work not only provides a powerful tool for simultaneously detecting four NEOs in lemon juice and tomatoes, but also offers a new insight into the preparation of bio-based magnetic sorbents for adsorption/removal of pollutants.


Assuntos
Solanum lycopersicum , Neonicotinoides , Polímeros/análise , Quitina , Extração em Fase Sólida/métodos , Ânions , Fenômenos Magnéticos , Cromatografia Líquida de Alta Pressão/métodos
14.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959757

RESUMO

In this study, TpDMB-COPs, a specific class of covalent organic polymers (COPs), was synthesized using Schiff-base chemistry and incorporated into a polyvinylidene fluoride (PVDF) polymer for the first time to prepare COPs mixed matrix membranes (TpDMB-COPs-MMM). A membrane solid-phase extraction (ME) method based on the TpDMB-COPs-MMM was developed to extract trace levels of six sulfonamides from human urine identified by high-performance liquid chromatography (HPLC). The key factors affecting the extraction efficiency were investigated. Under the optimum conditions, the proposed method demonstrated an excellent linear relationship in the range of 3.5-25 ng/mL (r2 ≥ 0.9991), with the low limits of detection (LOD) between 1.25 ng/mL and 2.50 ng/mL and the limit of quantification (LOQ) between 3.50 ng/mL and 7.00 ng/mL. Intra-day and inter-day accuracies were below 5.0%. The method's accuracy was assessed by recovery experiments using human urine spiked at three levels (7-14 ng/mL, 10-15 ng/mL, and 16-20 ng/mL). The recoveries ranged from 87.4 to 112.2% with relative standard deviations (RSD) ≤ 8.7%, confirming the applicability of the proposed method. The developed ME method based on TpDMB-COPs-MMM offered advantages, including simple operation, superior extraction affinity, excellent recycling performance, and easy removal and separation from the solution. The prepared TpDMB-COPs-MMM was demonstrated to be a promising adsorbent for ME in the pre-concentration of trace organic compounds from complex matrices, expanding the application of COPs and providing references for other porous materials in sample pre-treatment.


Assuntos
Polímeros , Sulfonamidas , Humanos , Polímeros/análise , Sulfonamidas/análise , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Limite de Detecção
15.
J Agric Food Chem ; 71(47): 18454-18465, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971953

RESUMO

Using a quantitative 1H NMR-based approach, molecular interactions between key taste active compounds and high-molecular-weight (HMW) polymers were directly investigated in red wine. Analysis of qualitative and quantitative 1H NMR spectra over time allowed a distinction of three interaction scenarios: (i) no interactions for flavon-3-ol glycosides, ellagitannins, carbohydrates, and amino acids; (ii) changes in the chemical shift to lower frequencies for flavan-3-ols and phenolic acid ethyl esters; and (iii) changes in the chemical shift to higher frequencies for phenolic acids, organic acids, inorganic salts, and alditols. Additionally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), quantitative 1H nuclear magnetic resonance (qHNMR), and high-performance ion chromatography (HPIC), a taste reconstitution model of Primitivo red wine was established for the first time. Human sensory experiments with the new taste recombinant and different HMW fractions demonstrated the influence of the tastant polymer interactions on the sour and salty taste perception of red wine and the intrinsic bitter and astringent taste of the polymers. Further, the influence of the molecular weight cutoff (MWCO) of the polymers and the pH value on the tastant polymer interactions was analyzed. Especially, the HMW fractions 30-50 kDa and >50 kDa caused strong shifts to lower and higher frequencies, respectively. NMR-based interaction studies at different pH values revealed a maximum of interactions at pH 4.0. Based on these results, flavor changes in red wine caused by tastant polymer interactions can be predicted on a molecular level in the future.


Assuntos
Percepção Gustatória , Vinho , Humanos , Cromatografia Líquida , Vinho/análise , Polímeros/análise , Espectrometria de Massas em Tandem , Paladar , Espectroscopia de Ressonância Magnética/métodos
16.
Eur J Cell Biol ; 102(4): 151366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871345

RESUMO

Microtubules are essential cytoskeletal polymers, which exhibit stochastic transitions between assembly and disassembly, known as catastrophes and rescues. Understanding of catastrophes, rescues, and their control by drugs and microtubule associated proteins (MAPs) has been informed by in vitro reconstitutions of microtubule dynamics. In such experiments microtubules are typically observed on a flat surface of the coverslip. In contrast, we have recently proposed a modified setup in which microtubules assemble from stabilized seeds, overhanging from microfabricated pedestals, so that their dynamic extensions are fully isolated from contact with the coverslip. This assay allows to eliminate potential artifacts, which may substantially affect the frequency of microtubule rescues in vitro. Here we use the pedestal assay to study the sensitivity of microtubules to paclitaxel, one of the best-known inhibitors of microtubule dynamics. By comparing observations in the conventional and the pedestal assays, we find that microtubule dynamics are substantially more sensitive to paclitaxel when the polymers can contact the coverslip. We interpret this as a consequence of the coverslip-induced microtubule assembly perturbation, leading to formation of lattice with defects, and thereby enhancing the efficiency of paclitaxel binding to microtubules in the conventional assay. To test this idea, we use vinblastine, another small-molecule inhibitor, which had been previously shown to cause microtubule growth perturbations. We find that in the pedestal assay vinblastine sensitizes microtubules to paclitaxel to the level, observed in the conventional assay. Interestingly, a minimal fragment of MAP called CLASP2, a previously characterized rescue factor, has a strong effect on microtubule rescues, regardless of the type of assay. Overall, our study underscores the role of microtubule damage in promoting rescues and highlights the utility of the in vitro pedestal assay to study microtubule dynamics modulation by tubulin inhibitors and MAPs.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Vimblastina/farmacologia , Vimblastina/análise , Vimblastina/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Paclitaxel/análise , Paclitaxel/metabolismo , Polímeros/análise , Polímeros/metabolismo , Polímeros/farmacologia
17.
Anal Bioanal Chem ; 415(27): 6809-6823, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798472

RESUMO

Quantification and characterization of microplastics, synthetic polymers less than 5 mm in diameter, requires extraction methods that can reduce non-plastic debris without loss or alteration of the polymers. Nitric acid has been used to extract plastic particles from zooplankton and other biota because it completely digests tissue and exoskeletons, thus reducing interferences. While the impact of acid digestion protocols on several polymers has been demonstrated, advice for quantifying microplastic and interpreting their spectra following nitric acid digestion is lacking. Fourier transform infrared (FTIR) and/or Raman spectroscopy was performed on plastics from > 50 common consumer products (including a variety of textiles) pre- and post-nitric acid treatment. The percent match and assigned polymer were tabulated to compare the accuracy of spectral identification before and after nitric acid digestion via two open spectral analysis software. Nylon-66, polyoxymethylene, polyurethane, polyisoprene, nitrile rubber, and polymethyl methacrylate had ≥ 90% mass loss in nitric acid. Other less-impacted polymers changed color, morphology, and/or size following digestion. Thus, using nitric acid digestion for microplastic extraction can impact our understanding of the particle sizes and morphologies ingested in situ. Spectral analysis results were compiled to understand how often (1) the best-hit matches were correct (30-60% of spectra), (2) the best-hit matches exceeding the (arbitrary) threshold of 65% match were correct (53-78% of spectra), and (3) the best-hit matches for anthropogenic polymers were incorrectly identified as natural polymers (12-15% of spectra). Based on these results, advice is provided on how nitric acid digestion can impact microplastics as well as spectral interpretation.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Ácido Nítrico/análise , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Polímeros/análise , Digestão , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
18.
Food Chem ; 425: 136499, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285625

RESUMO

The chemical safety of representative polysaccharide films made with pea starch, organocatalytic acetylated pea starch and pectin was investigated at different migration conditions (20 °C/10 days, 70 °C/2 h) using two official simulants signifying hydrophilic (simulant A, 10% ethanol) or lipophilic (simulant D1, 50% ethanol) foods. Migrating semi-volatile and non-volatile compounds were identified and semi-quantified by ultra-high performance liquid chromatography-trap ion mobility time-of-flight mass spectrometry (UHPLC-TIMS-TOF-MS/MS), whereas their toxicity was evaluated by in silico models based on qualitative structure activity (QSAR). Physicochemical analysis revealed polymer wash-off into the simulants. Migration testing at 70 °C for 2 h using simulant D1 resulted in detectable concentrations of glycerol (≤72.1 mg/kg), monoacetylated maltose (≤6.5 mg/kg), and dibutyl phthalate (DBP) (≤0.5 mg/kg, compliant with the existing legislative migration limits) in samples containing acetylated starch. Migrating 3-ß-galactopyranosyl glucose (≤8.9 mg/kg) and 2,5-diketo-d-gluconic acid (≤4.9 mg/kg) were detected at 20 °C/10 days. In-silico toxicity emphasized no significant toxicity and categorized organocatalytic acetylated pea starch of no safety concern.


Assuntos
Alimentos , Espectrometria de Massas em Tandem , Polímeros/análise , Amido , Etanol/análise , Embalagem de Alimentos , Contaminação de Alimentos/análise
19.
Anal Chim Acta ; 1271: 341448, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37328244

RESUMO

Monitoring the pH variation in lysosomes is very conducive to studying the autophagy process, and fluorescent ratiometric pH nanoprobes with inherent lysosome targeting ability are highly desirable. Here, a carbonized polymer dots-based pH probe (oAB-CPDs) was developed by self-condensation of o-aminobenzaldehyde and further carbonization at low temperature. The obtained oAB-CPDs display improved performance in pH sensing, including robust photostability, intrinsic lysosome-targeting ability, self-referenced ratiometric response, desirable two-photon-sensitized fluorescence property, and high selectivity. With the suitable pKa value of 5.89, the as-prepared nanoprobe was successfully applied to monitor the variation of lysosomal pH in HeLa cells. Moreover, the occurrence that lysosomal pH decreased during both starvation-induced and rapamycin-induced autophagy was observed by using oAB-CPDs as fluorescence probe. We believe that nanoprobe oAB-CPDs can work as a useful tool for visualizing autophagy in living cells.


Assuntos
Corantes Fluorescentes , Polímeros , Humanos , Concentração de Íons de Hidrogênio , Células HeLa , Polímeros/análise , Corantes Fluorescentes/química , Lisossomos/química , Autofagia
20.
Adv Mater ; 35(35): e2301242, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37370137

RESUMO

Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.


Assuntos
Bioimpressão , Hidrogéis , Humanos , Hidrogéis/química , Biomimética , Matriz Extracelular/química , Polímeros/análise , Engenharia Tecidual , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...